
GAME-KIT SOFTWARE

1. every hardware interface part has its own source + header file

 - advantage: * easy to convert it to nearly

 every plattform (- independent)
* the low level hardware drivers
 can be reused in future projects
* the font and animation part
 can be reused in future projects
* the game can be modified easiely
 without knowing the actual hardware
 design of this KIT, very convenient
 and ideal for beginners

2. the main game application is scalable

e.g.: - the screen resolution is not fixed.
 - the stone size is scalable.

 - the font and animations are user editable.

- advantage:
o not fixed to the GAME-KIT specification

- disadvantage:

o not as short/optimized as it could be
o somehow more complex to develop than an not scalable version

All in all we tried to design an easy to use and useful KIT for many application types such as
monitoring and displaying.
Beginner who want to get used to human interfaces, such as keyboard (input) and a relatively big
screen (14*20) (output) and want to play around with micro controllers without an enormous effort
to learn the schematic design, etc.

I. The sequence of the running program:

1. initialisation of the hardware (internal and external) and variables/registers after power up

1.1. I/Os
1.2. timer
1.3. LED matrix processor
1.4. variables

2. endless loop consists of:

2.1. the introduction animation
2.2. game loop containing:

- generation of the displayed playfield (gameplay.c + gameplay.h)
- check whether a collision would occure/occured and if, a check if the
 user lost the game or still able to play another brick/stone.
- If game is over: a “game over animation” will be showed, and after a
 short while back to a. (gameplay.c + gameplay.h)
- polling of keyboard and processing this data (XX_keyboard.c +
 XX_keyboard.h)
- transferring the video memory to display controller processor
 (XX_ledmatrix.h + XX_ledmatrix.h)
- random number generation for the next brick/stone
- etc. (playing sounds/melodies) (XX_sound.h + XX_sound.c)
- game over animation, (then back to 2.1.) (native_pictures.h +
 native_pictures.c)

 START

 init CPU

 start
 animation
 no

 key
 pressed show game
 over screen

 yes
 show score

 start/init
 game

 game running
 drop new game
 no stone over

 no yes no

 space for a
 new stone?
 “stone down” key
 timer triggered? pressed?

 key down check & del
 yes complete row

 left or right
 key down move stone

 collision collision no
 down? left or right?
 ignore
 yes
 no

 yes

II. The structure of the source files:

1. Used source files:

platform independent:

main.c � main body of the game application

gameplay.h � main functions/procedures of the game
gameplay.c (generation of the play field, collision,

the movement of the brick/stones (I.2.2.1 – I.2.2.2)

stones.h � stones/bricks declaration + definition
stones.c header

animation.h � source for playing animations
animation.c
animationdata.h (the animation data itself)
animationdata.c

font.h � source for displaying custom fonts +
font.c text scroller
fontdata.h (the font data itself)
fontdata.c

platform dependent:

WIN32:

pc_init.h � used for initializing the main software
pc_init.c components

pc_timers.h � pseudo timer functions for win32
pc_timers.c environment, timing is not accurate, just

for simple development, testing

pc_sound.h � pseudo sound functions for win32
pc_sound.c environment, no sound will be played under

win32, just empty function prototypes +
and implementations

pc_ledmatrix.h � pseudo LED matrix functions for win32
pc_ledmatrix.c environment, a console window is used to
emulate the LED Matrix

pc_keyboard.h � pseudo keyboard functions for win32
pc_keyboard.c environment, the STDIO (pc-keyboard) is
used to emulate the hardware keys of the
GAME-KIT

Fujitsu processor (GAME-KIT):

fu_init.h � initialization of CPU registers +
fu_init.c variables and ISRs

fu_ledmatrix.h � low level driver for LED matrix of the
fu_ledmatrix.c GAME-KIT

fu_keyboard.h � low level driver for the keyboard
fu_keyboard.c

fu_timers.h � low level driver for the TIMER ISRs
fu_timers.c

fu_sound.h � low level driver for the sound/melody
fu_sound.c generation

fu_battery.h � low level driver for checking and
fu_battery.c displaying the current battery status

